PTG introduces Powerstir dual weld-head friction stir welding for electric vehicle OEMs

UK-based Precision Technologies Group (PTG), the manufacturer of the Powerstir range of friction stir welding machines, has introduced a number of dual weld-head FSW models specifically for use in the volume production of automotive battery tray floor assemblies from extruded aluminium panels.

PTG has long used its considerable knowledge of the FSW process to assist automotive OEMs in producing lightweight, robust and aesthetic components for battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV). Aimed directly at manufacturers of skateboard chassis structures, the dual weld-head process developed by PTG ensures that a tight weld-flatness tolerance is achieved during battery tray floor construction.

A tight weld-flatness tolerance is essential to ensure that each battery cell sits perfectly level within its housing. PTG Powerstir dual weld-head FSW machines provide an even and stable welding process – achieved, thanks to the company’s unique ‘matched’ dual-force control systems and balanced upper and lower head welding parameters. The result is exceptionally stable friction stir welding by both the upper and lower weld heads, producing matched weld seams with balanced heat input. This, in turn, minimises post-weld distortion and equips each welded assembly with a significantly improved flatness tolerance.

As aluminium extrusion lines usually produce panels of 300 to 600 mm wide, PTG has also developed a fully automated, high-output Powerstir FSW production cell for the rapid friction stir welding of multiple extrusions, to create single structures for fabrication into battery tray floors. These structures are typically up to 2.4 m wide.

In the PTG Powerstir dual weld-head FSW process, typically four to 12 individual child-part extrusions are brought together for assembly. Following gantry loading, each extrusion is automatically positioned and clamped ready for friction stir welding, after which the partially completed vehicle component is automatically repositioned, ready for the next panel to be welded in place.

“In addition to providing automotive OEMs with a state-of-the-art means of joining metals and achieving extremely high-strength results, it is also important to consider that in many instances, the use of friction stir welding also allows for reduced wall thickness – an important aspect in reducing vehicle weight,” adds Mark Curran, PTG Powerstir regional sales director. “As the friction stir welding process generates very little heat, the crystalline structure of the metal remains unchanged, retaining its original strength. There is no need for inert gas, no need for heat-treating post weld, and no requirement for additional surface finishing.”